首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   41篇
  国内免费   3篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   9篇
  2016年   5篇
  2015年   3篇
  2014年   5篇
  2013年   10篇
  2012年   6篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   4篇
  2007年   8篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
31.
为了降低固定稀疏率、固定孔径的稀疏矩形阵列的峰值旁瓣电平,提出一种改进整型遗传算法。该算法在整型遗传算法的基础上,提出了等间隔采样的交叉策略、多点变异策略以及优良基因重组的策略。采取等间隔采样的基因交叉方式,可以有效发挥整型编码的优势,从而提高算法的运行效率;为了提高种群的多样性,防止算法陷入局部最优,采用了多点变异策略;采用优良基因重组技术,加快了算法的收敛速度。仿真结果表明,相比传统的二进制和实数编码,整型编码更为直接高效;与用于稀疏矩形阵列优化的相关算法相比,本文所提算法获得了更优的旁瓣电平,证实了算法的有效性和优越性。  相似文献   
32.
We consider a ship stowage planning problem where steel coils with known destination ports are to be loaded onto a ship. The coils are to be stowed on the ship in rows. Due to their heavy weight and cylindrical shape, coils can be stowed in at most two levels. Different from stowage problems in previous studies, in this problem there are no fixed positions on the ship for the coils due to their different sizes. At a destination port, if a coil to be unloaded is not at a top position, those blocking it need to be shuffled. In addition, the stability of ship has to be maintained after unloading at each destination port. The objective for the stowage planning problem is to minimize a combination of ship instability throughout the entire voyage, the shuffles needed for unloading at the destination ports, and the dispersion of coils to be unloaded at the same destination port. We formulate the problem as a novel mixed integer linear programming model. Several valid inequalities are derived to help reducing solution time. A tabu search (TS) algorithm is developed for the problem with the initial solution generated using a construction heuristic. To evaluate the proposed TS algorithm, numerical experiments are carried out on problem instances of three different scales by comparing it with a model‐based decomposition heuristic, the classic TS algorithm, the particle swarm optimization algorithm, and the manual method used in practice. The results show that for small problems, the proposed algorithm can generate optimal solutions. For medium and large practical problems, the proposed algorithm outperforms other methods. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 564–581, 2015  相似文献   
33.
The assignment of personnel to teams is a fundamental managerial function typically involving several objectives and a variety of idiosyncratic practical constraints. Despite the prevalence of this task in practice, the process is seldom approached as an optimization problem over the reported preferences of all agents. This is due in part to the underlying computational complexity that occurs when intra-team interpersonal interactions are taken into consideration, and also due to game-theoretic considerations, when those taking part in the process are self-interested agents. Variants of this fundamental decision problem arise in a number of settings, including, for example, human resources and project management, military platooning, ride sharing, data clustering, and in assigning students to group projects. In this article, we study an analytical approach to “team formation” focused on the interplay between two of the most common objectives considered in the related literature: economic efficiency (i.e., the maximization of social welfare) and game-theoretic stability (e.g., finding a core solution when one exists). With a weighted objective across these two goals, the problem is modeled as a bi-level binary optimization problem, and transformed into a single-level, exponentially sized binary integer program. We then devise a branch-cut-and-price algorithm and demonstrate its efficacy through an extensive set of simulations, with favorable comparisons to other algorithms from the literature.  相似文献   
34.
Stochastic network design is fundamental to transportation and logistic problems in practice, yet faces new modeling and computational challenges resulted from heterogeneous sources of uncertainties and their unknown distributions given limited data. In this article, we design arcs in a network to optimize the cost of single‐commodity flows under random demand and arc disruptions. We minimize the network design cost plus cost associated with network performance under uncertainty evaluated by two schemes. The first scheme restricts demand and arc capacities in budgeted uncertainty sets and minimizes the worst‐case cost of supply generation and network flows for any possible realizations. The second scheme generates a finite set of samples from statistical information (e.g., moments) of data and minimizes the expected cost of supplies and flows, for which we bound the worst‐case cost using budgeted uncertainty sets. We develop cutting‐plane algorithms for solving the mixed‐integer nonlinear programming reformulations of the problem under the two schemes. We compare the computational efficacy of different approaches and analyze the results by testing diverse instances of random and real‐world networks. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 154–173, 2017  相似文献   
35.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
36.
多发多收合成孔径雷达(MIMO SAR)是近年来发展起来的一种新型雷达体制。与传统SAR相比,MIMO SAR综合利用了波形分集和空间分集优势,如何衡量系统的分辨特性以及模糊特性成为亟待解决的问题。本文将模糊函数概念推广到MIMO SAR性能分析中,通过数学推导获得了广义模糊函数的解析表示,结果表明MIMO SAR系统分辨率不仅取决于发射波形参数以及合成孔径长度,还与发射波形集的正交性以及收发天线阵列流形密切相关,仿真实验验证了系统模型的有效性和相应分析的正确性。  相似文献   
37.
This study addresses the design of a three‐stage production/distribution system where the first stage includes the set of established retailers and the second and third stages include the sets of potential distribution centers (DCs) and potential capacitated suppliers, respectively. In this problem, in addition to the fixed location/operating costs associated with locating DCs and suppliers, we consider the coordinated inventory replenishment decisions at the located DCs and retailers along with the appropriate inventory costs explicitly. In particular, we account for the replenishment and holding costs at the retailers and selected DCs, and the fixed plus distance‐based transportation costs between the selected plants and their assigned DCs, and between the selected DCs and their respective retailers, explicitly. The resulting formulation is a challenging mixed‐integer nonlinear programming model for which we propose efficient heuristic solution approaches. Our computational results demonstrate the performance of the heuristic approaches as well as the value of integrated decision‐making by verifying that significant cost savings are realizable when the inventory decisions and costs are incorporated in the production distribution system design. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 172–195, 2012  相似文献   
38.
This paper discusses a novel application of mathematical programming techniques to a regression problem. While least squares regression techniques have been used for a long time, it is known that their robustness properties are not desirable. Specifically, the estimators are known to be too sensitive to data contamination. In this paper we examine regressions based on Least‐sum of Absolute Deviations (LAD) and show that the robustness of the estimator can be improved significantly through a judicious choice of weights. The problem of finding optimum weights is formulated as a nonlinear mixed integer program, which is too difficult to solve exactly in general. We demonstrate that our problem is equivalent to a mathematical program with a single functional constraint resembling the knapsack problem and then solve it for a special case. We then generalize this solution to general regression designs. Furthermore, we provide an efficient algorithm to solve the general nonlinear, mixed integer programming problem when the number of predictors is small. We show the efficacy of the weighted LAD estimator using numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
39.
GPS载体姿态测量中的整周模糊度的快速求解   总被引:1,自引:1,他引:0  
全球定位系统 (GPS)的良好性能和便宜的价格为其在姿态测量领域的应用开辟了广阔的前景 ,GPS载体姿态测量技术也成为 GPS应用中的热门研究方向。以利用 GPS载波相位测量来确定载体姿态为背景 ,介绍了 GPS载波相位差分技术的基本原理 ,并针对其中的关键技术问题——载波相位整周模糊度的快速解算 ,叙述和建立了整周模糊度快速解算的具体方法。详细地介绍了载体姿态测量系统中基线的构置方案和求解载体姿态的基本算法 ,即利用基线长确定整周模糊度的初始解集 ,然后利用约束条件来剔除解集中的假解。  相似文献   
40.
We consider the parallel replacement problem in which machine investment costs exhibit economy of scale which is modeled through associating both fixed and variable costs with machine investment costs. Both finite- and infinite-horizon cases are investigated. Under the three assumptions made in the literature on the problem parameters, we show that the finite-horizon problem with time-varying parameters is equivalent to a shortest path problem and hence can be solved very efficiently, and give a very simple and fast algorithm for the infinite-horizon problem with time-invariant parameters. For the general finite-horizon problem without any assumption on the problem parameters, we formulate it as a zero-one integer program and propose an algorithm for solving it exactly based on Benders' decomposition. Computational results show that this solution algorithm is efficient, i.e., it is capable of solving large scale problems within a reasonable cpu time, and robust, i.e., the number of iterations needed to solve a problem does not increase quickly with the problem size. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 279–295, 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号